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[1] Passive end body plasma contactors have been operationally validated in space and
have been shown to provide a simple, effective, and robust means of current collection
at the positive terminal of an electrodynamic tether system. A grid sphere has been
suggested as a possible end body since it potentially has distinct advantages compared to a
solid sphere, including a lower neutral dynamic drag and a higher current-to-mass

ratio. This paper estimates the maximum current collected by a grid sphere, taking into
account its orbital motion and ion production inside the grid sphere. We first review
the data from the tethered satellite system (TSS 1) and the TSS 1R flights, formulate a
model for current collection by a solid sphere, and suggest how to incorporate it into the
grid sphere current collection estimate. Then we calculate the potential distribution
inside the grid sphere and the potential distribution outside the solid sphere for the same
system parameters. Finally, we estimate the maximum current collected by a grid sphere

depending on its transparency.
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1. Introduction

[2] There are a number of space applications for electro-
dynamic tether systems that require high current on the
order of dozens of amperes for operation. Closure of the
electric circuit of an electrodynamic tether necessarily
requires an electrical connection between the tether’s
positive electrode and the ambient ionospheric plasma,
where the anode may take various forms. It may be a
spherical solid surface conducting end body that has been
systematically studied for the TSS missions, or it may be
the positively biased portion of the tether itself as was
planned for the ProSEDS flight demonstration. No matter
what the geometry of the collection area might be, the
collection, for example, of 10 A requires a large current
collection surface on the order of 1000 m?, because
ionospheric thermal current density is only about
10 mA/m®. That is why there is a constant search for
the most efficient and light end body contactor.

[3] Passive end body contactors have been validated in
space and provide a simple, effective, and robust means of
current collection at the positive terminal of an electrody-
namic tether system. Determination of the most effective
type of contactor is primarily based on its current collection
efficiency, dynamic drag, and mass. Stone and Gierow
[2001], Stone et al. [2002] have proposed a grid sphere
end body with high transparency, about 90%. They argue
that such a design has distinct advantages, providing a large
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current collection area, low dynamic drag and high current-
to-mass ratio. Their preliminary results regarding the grid
sphere performance, based on a calculation of the current
collection for cylindrical and spherical bodies, suggest that
it may be a simple and reliable means of developing large
tether currents, unencumbered by high power requirements,
hot filaments, expendables, and the complex electronics
associated with existing active contactor devices.

[4] Their analysis of current collection for a grid sphere
assumed that there is no positive charge inside the sphere
and neglected the tether system orbital motion. The motion,
as known from the results of the TSS 1 and TSS IR
missions, substantially increases the current collected by a
solid sphere [Wright et al., 1996; Thompson et al., 1998].
We present below a calculation of the maximum current
collection by a grid sphere taking into account the orbital
motion, as well as the ion production from ionization of
neutrals by incoming energetic electrons inside the grid
sphere. The paper is organized as follows: Section 2 reviews
the current collection of TSS 1 and the TSS IR flights, and
presents a model for solid sphere current collection;
section 3 describes the potential distribution formation
inside the grid sphere; section 4 suggests how to incorpo-
rate the results of sections 2 and 3 into the grid sphere
current collection studies and calculate the upper bound
for this current; and section 5 summarizes the results.

2. Model for a Solid Sphere Current Collection

[5] One of the major goals of the TSS 1 and TSS IR
flights was to study the electron current collected by a solid
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Figure 1. Schematic of the model. The satellite moves
from right to left with velocity V; B is the ambient magnetic
field; the sphere (grid sphere) radius is R; the shaded area is
the region close to neutral; 7, is an arbitrary point where an
ion is produced; and 7, indicates the boundary between the
regions of one- and two-dimensional electron acceleration.
The tether is along the normal to the plane.

sphere subsatellite at a large positive voltage with respect to
the surrounding plasma. During both flights, the subsatel-
lite’s current collection was observed to be in excess of the
values predicted by Parker and Murphy [1967] by a rough
factor between 2 and 6, when the potential was between
20—-1000 V positive with respect to the subsatellite’s
surroundings. Such an outcome was very surprising in view
of the large mean electron thermal speed (212 km/s for the
thermal energy ~0.1 eV), compared with their relative drift
speed about 8 km/s due to the satellite’s orbital motion. To
explain these results, several theoretical approaches have
been developed [Dobrowolny et al., 1995; Vannaroni et al.,
1998; Katz et al., 1994; Laframboise, 1997; Cooke and
Katz, 1998; Ma and Schunk, 1998; Singh and Leung, 1998]
that focused mainly on the TSS 1 or TSS IR observations.
In this section we present a model for solid sphere current
collection based on these theoretical results and the exper-
imental data from both TSS missions. Using this model,
we will estimate the maximum current collected by a grid
sphere.

[6] For a solid sphere contactor we assume that the region
outside the sphere can be divided in two shells (Figure 1).
The inner region, starting from the sphere surface, is
assumed to be spherically symmetric with a Boltzmann
ion distribution and one-dimensionally accelerated electrons
[Laframboise and Parker, 1973; Laframboise, 1997]. The
outer boundary of this region, r,, is the isopotential surface
that reflects the ion flux related to satellite motion
[Laframboise, 1997; Cooke and Katz, 1998] and collects a
current equal to the upper limit current found by
Laframboise and Parker [1973] for two-dimensional elec-
tron acceleration. According to Laframboise and Parker
[1973], this current, collected in our model at the boundary
of the first region, is

I 1 7 1
= (Vo e g

where R is the sphere radius, 7, is the boundary radius, and
X» = epp/kT is the normalized potential (¢, is the potential
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of the boundary, e is the elementary charge, 7 is the plasma
temperature, and k is the Boltzmann constant). The current
is normalized to I, = wR%en. \/8kT /mm, the random
electron current. Here n. is the undisturbed plasma density
and it is assumed in expression (1) that the current is
collected only by the leading ram hemisphere. Following
Cooke and Katz [1998] and Laframboise [1997], the
potential at the boundary is set equal to the energy needed
to reflect the ions, defined by the normal component of
the ion velocity relative to the satellite and averaged over
the sphere surface. So X, = E/3kT where E; = 5 ¢V is the
ion kinetic energy.

[7] To calculate the current from equation (1), the
radius of the boundary, r,, that separates the regions of
one- and two-dimensional acceleration should be found.
To calculate r,, the Poisson equation in the region
between the grid sphere surface and the boundary has
been solved:

1 d ,dx R [ 2
4 T
dx N}

_ r rp ep
< S e ) i<x=l< %
X dx Noa )’ SYTRERN TR @)

The electron density here corresponds to the one-dimen-
sional acceleration case [Laframboise and Parker, 1973]
with x > 1, where \p is the Debye length. At the outer
boundary of this region, r;, the electron density is chosen
equal to the ion density, which because of ion reflection is
set at twice the undisturbed ion density [Laframboise,
1997].

[8] To calculate the unknown radius 7, from equation (2),
a third condition is needed, which could be provided by the
solution in the outer domain » > r,. Instead, we simplify
the problem by assuming that the boundary 7, between the
regions of one- and two-dimensional acceleration can be
identified as the position where the electric field abruptly
drops and changes sign, indicating that further out the one-
dimensional electron density distribution is not valid. As
can be expected from equation (2), it is also the radius
where the potential, x, is close to zero. Such approach is
partly justified by the results of the numerical simulations
[Ma and Schunk, 1998; Singh and Leung, 1998], where
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Figure 2. Normalized potential distribution x = ep(x)/kT
(dashed line) and electric field —dx/dx (solid line) in the
region of one-dimensional electron acceleration x = 7/R.
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Table 1. Normalized Currents Collected by TSS-1 and TSS-1R Missions //,, Calculated Currents /.//y, and Their

Ratio /1.

oo 10710, m~3 T, °K ¢or, V I,y /R L/, 11,
2.5 1160 445 7.0 1.82 7.7 0.91
70 1200 30 2.9 1.15 3.0 0.97
8.4 1600 235 10.6 222 9.9 1.07
32 1650 850 133 2.5 12.4 1.07

two regions with different potential structure are observed,
as well as by the agreement of our results presented below
with experimental data.

[¢] So the boundary radius, r;,, has been defined as the
radius where simultaneously the potential is close to zero
and the electric field abruptly drops and changes sign.
Equation (2) has been solved numerically by starting from
the sphere surface with the known potential and some
potential first derivative. The potential first derivative on
this surface was adjusted until the radius defined above as
the boundary has been found. Outside this boundary the
assumed density distribution is no longer applicable. We
plot the normalized potential and the first derivative of this
potential over the normalized length, x = #/R, for xz =
epr/kT = 1000 and R/x\p = 135 in Figure 2. As can be
seen from Figure 2, the transition region near the boundary
is very narrow and the boundary radius r, is easy to
identify. The same holds true for all system parameters
used in our calculations. To verify the model, such
calculations have been performed on the set of system
parameters for which experimental data are available.
Table 1 compares the results of these calculations with
the data from TSS 1 [Dobrowolny et al., 1995] and TSS
IR [Vannaroni et al., 1998] missions for very different
system parameters. As can be seen, the ratio of observed
to calculated currents, //I., shows good agreement despite
large variations in plasma density, temperature and sphere
potential.

[10] Figures 3 and 4 plot the results of these calculations
along with all the data from Dobrowolny et al. [1995] and
Vannaroni et al. [1998]. Our Figure 3 reproduces Figure 2
from the first paper (TSS 1 mission) with the results of our
calculations inserted as the red dots. The sphere potential
and plasma parameters for these calculations, presented in
Table 2, are taken from their Table 1. The measured
temperature is 0.1 eV. The three curves in Figure 3
correspond to three models of current collection: the
Parker-Murphy model (P-M 1), the Alpert model [Alpert
et al., 1965] and the Parker-Murphy model modified for
sweeping effects of the velocity flow (P-M 2). Figure 4
reproduces Figure 1 from the paper of Vannaroni et al.
[1998] (TSS 1R mission). They compared their observed
currents with that predicted by the Parker-Murphy and
Alpert models. Again, our results are added as red dots. As
can be seen from Figures 3 and 4, the results of our
calculations are in reasonable agreement with the measure-
ments except for a few low-voltage cases presented in
Figure 4a, where the measured current-voltage character-
istic is quite different from all other measurements. Our
model predicts a current close to that of the Alpert model,
which describes the current collection in an unmagnetized
plasma. It should be noted that the results from the Alpert
model shown in Figures 3 and 4 are obtained under the

condition epr/kT > (R/\p)*> [Dobrowolny et al., 1995;
Vannaroni et al., 1998; Alpert et al., 1965], which is not
satisfied for typical plasma parameters at altitudes about
300-400 km for large sphere radii. For the system
parameters of Figure 4a, (ecplg/kT)(R/XD)*‘”3 < 0.24.
According to the Alpert model, if this parameter is much
less than one, the current should be constant, /I, = 1.5, so,
the Alpert model is not applicable. For an electrodynamic
tether drawing even fewer amperes, the radius must be so
large as to make this parameter much smaller than 1, also
rendering the Alpert model inapplicable. This is the
situation that exists in the case of a grid sphere that
should have a large enough radius to collect a suitable
current.

[11] The current collected by the solid sphere contactor
(equation (1)) can be estimated for different system
parameters with the help of Table 3, which tabulates the
magnitude of the normalized boundary radii, /R, for the
set of two dimensionless parameters, R*/\3 and epplkT
determining the solution of equation (2). As can be seen
from Table 3 the boundary radius is inversely proportional
to R*/\}, which can be approximated as (r,/R)* o< (\p/R*)"
with an accuracy of about 20%. The exponent o depends
on the normalized potential of the sphere surface, for
example, ¢ = 0.12, 0.23, 0.28 for eppr/kT = 103, 5 x
10%, 10* respectively.
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Figure 3. Comparison between experimental data (dia-
monds) and theoretical models. The satellite potential is
represented on the abscissas and the normalized current on
the ordinates. Red dots plot the results of this paper.
Adapted from Dobrowolny et al. [1995, Figure 2].
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Figure 4. Comparison between the experimental I-V characteristic (dots) and theoretical models
(crosses for the Alpert model and triangles for the Parker-Murphy model): (a) first IV-24 with
experimental conditions ®eme= 1200 V, no = 7.0 x 10" m—>, and T, = 1200 K; (b) second IV-24 with
Peme= 1075V, n. = 8.4 x 10" m™3, and T, = 1600 K; (c) third IV-24 with e = 3463 V, no = 3.2 x
10" m—3, and T. = 1650 K). Red dots plot the results from this paper. Adapted from Vannaroni et al.

[1998, Figure 1].

[12] We use this model to estimate the upper bound of
the current collected by the grid sphere.

3. Potential Interior of the Grid Sphere

[13] Following Stone et al. [2002], we assume that a grid
sphere is characterized by the transparency o, equal ap-
proximately to the ratio of the part of the sphere surface
without mesh to its total surface. Electrons accelerated by
the grid sphere potential penetrate inside the grid sphere and
cause impact ionization of neutrals. The secondary electrons
produced by this process will be expelled quickly from the
grid sphere, but the ions will be kept inside it by the charge
of the high-energy incoming electrons. The grid sphere ion
content depends on the rate of ion production, recombina-
tion, and their flux through the grid sphere surface. For an
ionospheric altitude about 300 km and above, recombina-
tion is slow compared to the ionization rate and can be
neglected, as can be seen from a following simple estimate.

[14] The main neutral components at this altitude are
molecular nitrogen, and atomic oxygen. We can assume
that the ionization cross section due to collisions with the
energetic electrons for all of these components is of the
same order of magnitude. The ions of atomic oxygen have
the longest lifetime at this altitude, which is determined by
ion-molecular reactions of O" with nitrogen neutral mole-
cules [Schunk and Nagy, 2000]. This lifetime is #;, ~ 1000 s.
Other ions, produced by collisions with fast electrons, are
neutralized on a shorter timescale; so their contribution is
about five times smaller and will be neglected. The number
of oxygen ions produced per unit volume per second by
ionization is oNyj, where o is the cross section for impact
ionization, Ny is the atomic oxygen density, and j is the
electron flux density. In quasi-static equilibrium, the ioni-
zation and recombination processes balance, which can be
written as oNpj = n;/t,, where n; is the oxygen ion density.
Foro=10"2"m? N,=5 x 10" m~>, and thermal electron
flux j = noo\/kT /27m, this leads to an oxygen ion density
more than two orders of magnitude larger than the density
of the undisturbed plasma, 7., for particle energies k7T ~
0.1 eV, as can be seen from their ratio n/n., = t,0N,
kT /2mm. Therefore the role of recombination is negligi-
ble, and the ion content of the grid sphere is determined by
the balance between oxygen ion production and their flux
through the grid sphere surface.

[15] In contrast to the ions, the density of the locally
produced secondary electrons will be much smaller than the
density of penetrating electrons. The secondary electron
production rate inside the grid sphere is roughly equal to
the grid sphere volume multiplied by the electron density
production rate, which is approximately the same as for
ions, oNyj. The flux of the secondary electrons through the
grid sphere surface is 4nR? j,, where the grid sphere radius
is R, and j; is the secondary electron flux density. In
equilibrium the production and losses should be equal,
RoNgpj ~ j,. Since the energy of the incoming electrons is
defined by the grid sphere surface potential, g, this
equilibrium becomes RoNy +/epp/Ks; ~ ngdn, where K
and n, are the kinetic energy and density of a secondary
electrons, and 7 is the density of incoming electrons. The
energy ratio is epgr/K; ~ 20-50 for impact ionization of
the oxygen atoms, if the grid sphere surface potentials are
in the range 100—1000 V. For the grid sphere radius R ~
10 m, using o and N, from the previous estimate, ny/n is
less than 0.001 justifying our neglect of the secondary
electrons in the calculations below.

[16] To calculate the potential distribution inside the grid
sphere the electron and the ion densities are needed. The
ionized neutrals have a large velocity relative to the grid
sphere compared to their thermal velocity because of the
grid sphere orbital motion. In the coordinate system that is
attached to the grid sphere, ions are born with a velocity of
about 8 km/s, giving them a transit time through the grid
sphere of about 0.1—1 ms for grid sphere radii in the range
of 1-10 m. Because of the large interior scale of the grid
sphere compared to the Debye length, it can be expected
that in equilibrium most plasma inside the grid sphere will

Table 2. Current, Voltage, and Electron Density Measured by the
TSS 1 Mission [From Dobrowolny et al., 1995, Table 1]

oo 10710, m=3 I, mA ¢or V
4.5 14.65 14.0
4.0 14.02 20.3
35 13.39 28.8
3.0 12.13 38.1
2.5 11.97 445
22 10.71 57.2
2.0 11.97 61.0
1.8 11.97 64.8
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Table 3. Parameter /R for the Solid Sphere Current (Equation 1)
RN\ x 10°°
073 29 51 65 116

136 120 1.15 1.13 1.10
193 154 143 138 130
235 1.81 1.65 1.59 1.46

eQR/kT 018

1000 1.63
5000  2.54
10000  3.19

18.1 46 81 127

1.08 1.05 1.04 1.03
125 1.16 1.12 1.10
1.38 1.26 120 1.16

be quasi-neutral, at least for large sphere radii and dense
plasma. Maintaining quasi-neutrality inside the grid sphere
requires that the ions be quasi-trapped with a characteristic
time that can be estimated assuming equal densities of ions
and penetrating electrons. The time needed to produce an
ion density n; ~ n, with an ionization rate cNyj is t,. ~
n/JoNpj, which is the characteristic time to replenish the
ion population. With an electron velocity v, o< /g for
high grid sphere surface potential, g, this time can be
rewritten as #,[sec] ~ C/\/epy/kT, where the constant C
is about 1sec for the particle parameters used above. This
is also the characteristic time that the ion should be kept
inside the grid sphere to maintain plasma quasi-neutrality.
Since this time is much longer than the transit time, even
for high grid sphere potentials, the newborn ion must
experience multiple reflections before leaving the grid
sphere. Therefore a potential well inside the grid sphere
must exist.

[17] The newborn ions can be described by a shifted
Maxwell-Boltzmann distribution function describing par-
ticles in the presence of conservative force field,

£t =0,7,7) = Cyexp (— ei(;") (- vs)z). (3)

Here ¥, and V are the satellite and ion velocities normalized
by vy = \/2kT /M, M is the mass of the oxygen ion, and
(7o) is the potential at the point where the ion is born
(Figure 1). Because of multiple reflections inside the well
the equilibrium distribution should be nearly isotropic in
velocity space on a long timescale compared to the transit
time. It means that the angle-dependent part of the
distribution (3) vanishes for times longer than the transit
time, which is also the time between ion “collisions” with
the potential wall, leaving only the isotropic part. This
isotropic part can be found as the angle-independent term of
the function (3) when expanded in spherical harmonics in
configuration and velocity space, or by averaging this
function over all angles. Therefore the distribution function
averaged over the oscillations in the well, which randomize
the momentum but conserve the energy, will depend only on
the distance from the center of the grid sphere, r = ||, and
the ion speed v = |J|. The angle-averaged part, f;, of the
initial distribution (3) is

= G0 (xo-(#+)
= 2WSe sinh(2vvy). 4)

fo(t=10,79,v)

[18] The dependence of this distribution on 7y, v is

independent of time so for times larger than the transition

time, t,, the function is the same within a normalization
constant, f, (¢ > t,, ro, v) = cfo (t = 0, rg, V).

[19] Equation (4) presents the velocity dependence of

the ion distribution at the location o, where the particles
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are produced by ionization. At the location r the ion
distribution can be found as the solution of the kinetic
equation. Because the quasi-static distribution function is

angle-independent in configuration as well as in velocity
the kinetic equation reduces cdedf_

space, the kinetic equation reduces to v— — — — == 0.

pace, d Oor M dr ov

The solution of this equation depends on the ions energy
integral and can be obtained from equation (4) by setting
v — /v + e[p(r) — ¢(r9)] /kT, which can be checked by
substituting directly into the kinetic equation.

[20] As previously mentioned, there are two length scales
in the electrostatic problem of grid sphere interior potential
calculation: the Debye length, and the size of the grid
sphere. Because the grid sphere size is much larger than
the ionospheric Debye length, it can be expected that the
main part of the ion population is born in the quasi-neutral
region with a potential y, or where the potential is close to
this value. Neglecting the small term with the negative
power in sinh(2vv,) of equation (4), the ion distribution can
be written as

£ = S exp(~w—v?). u= VATFAX,

Ax = = (6(r) = %0).

(5)

[21] The constant C of this steady state distribution can be
found from the balance between ion production inside the
grid sphere and ion flux through the grid sphere surface.
Assuming that the potential drop inside the grid sphere is
small compared to the grid sphere surface potential accel-
erating the electrons, and that the approximately neutral
region is large, the radial dependence of the electron flux
density, j, can be neglected. So the balance between ion
production and loss through the grid sphere surface can be
written

4
gﬂR30<cNO' = 4nR*v}. /f(R7v)v,,dv3, (6)

where v, is the ion velocity component normal to the grid
sphere surface. The calculation of ion flux density on the
right-hand side of the expression (6) is presented in
Appendix A, (Al) and (A2). The normalization constant,
C, in the ion distribution (5) can be expressed using
equation (6) and the result is

2aRjoN, e
Coggil . Ma=ilon—w) ()

T 3mAD (v, Axg)
where ¢y is the potential of the grid sphere surface, @y is the
potential at the point where the ion is produced, and I'(vy,
Ax ) is defined by equation (A2).

[22] So the ion density can be found by integration of
the distribution function (5), and (7) over the velocity V. The
domain of integration in velocity space is restricted by the
condition that the ion kinetic energy should be smaller then
the depth of the potential well. The ion density calculations
are presented in Appendix A. It is found (A5) that

n(r) = z(ﬁvT>3C[T(st AX) - \P(Vsa AXR)L (8)

with the coefficient C defined by equation (7).
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Figure 5. Normalized potential distribution inside the grid
sphere, Ax = e(p(r) — @o)/kT. Cases a and b correspond to
parameters IT; =9 x 10° and I, = 1.5 x 10’, respectively.
For the solid lines, IT, = 0.002, and for the dashed lines,
IT, = 0.0243.
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[23] To calculate the density of the penetrating electrons
we assume a one-dimensional acceleration inside the grid
sphere. This assumption has been used by Laframboise
[1997] in the model of current collection for the region just
outside the solid surface and in our model for current
collection presented in section 2. As shown above, the
results from this model are in reasonable agreement with
the experimental data from the TSS 1 and TSS 1R missions.
We expect that the potential drop inside the grid sphere is
small compared to the grid sphere surface potential. If the
electric field near the surface inside the grid sphere is
comparable to the electric field outside it, the character of
the density distribution will also remain close to the
character of the density distribution outside the grid sphere
surface. It is in this inner region near the grid sphere surface
that the main part of the total inner potential drop, Axg,
takes place. Deeper inside, and farther from the surface, the
change of potential is small and therefore the same will be
true for the density, taking into account that the potential
drop, Axg, is small compared to the electron energy. Then
the electron density into the sphere can be written

m
2ep(r)’

©)

ne = Qf

where the potential can be expressed using Ax and Axz
from equations (5) and (7) (ep(r) = epr + kT(AX — AXRr)).
Equating the ion density (8) to the electron density (9), and
setting Ax equal to zero, the quasi-neutrality condition can
be written

4y/m M regp L(vs, Axr)
TV GNoRY — (SR — Ay ) =
3 OO (kT XR) W (v, AX = 0) — ¥(vs, Axp)’

(10)
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where the values of I' and ¥ are defined by equations (A2)
and (AS5) respectively. As can be seen from this equation,
the depth of the potential well, Ay, for fixed values of
electron temperature and neutral particle density, depends
only on the satellite velocity and the grid sphere poten-
tial, but not on the grid sphere transparency. The left-
hand side of equation (10) is the product of two terms:
the ratio of the grid sphere size to the electron free path
between ionization collisions; and a term primarily
dependent on the grid sphere potential. It was found that
the well depth, Axg, is inversely proportional to the
magnitude of these dimensionless parameters, so that for
larger parameters the depth is smaller. This depth is of the
same order of magnitude as the kinetic energy of the
oxygen ion motion relative to the satellite (~5 eV). For
the combination of oN,R = 6 x 10> and grid sphere
potentials 100 V and 1000 V, the well depth is 5.7 V and
4.9 V, respectively, while for oN,R = 5 x 107¢ the
potential drops are 7.2 V and 6.6 V. If the parameter
oN,R changes from 6 x 107> to 5 x 107, for a grid
sphere potential of 500 V, the well depth changes from
52 Vit 6.8 V.

[24] These magnitudes for the potential well are calcu-
lated using equation (8) for the ion density obtained with
the help of the mathematical approximation (A5) discussed
in Appendix A. While these results are needed for the self-
consistent calculation of the potential distribution inside
the grid sphere presented below, the depth of the potential
well can also be calculated using the exact ion density
(A4) from Appendix A. The difference in the depth of the
potential well from both calculations is less then 10%, that
is, the same order as the accuracy of the mathematical
approximation used in the ion density calculations, as
discussed in Appendix A.

[25] We assumed above that in most of the grid sphere
interior, the potential is close to the potential determined
by neutrality, and the electric field near the grid sphere
surface is large. If either assumption does not hold, the
expressions for the ion and electron densities are not
valid. To check these assumptions and to calculate the
potential distribution, Ay, inside the grid sphere the
Poisson equation should be solved. With the densities
defined by equations (7)—(9) this equation can be presented
as

1 A 1
_ZiXZd_X:HI e
xide  dx VXg +AX — Axg

o, F0aA0) —\P(v‘Y,AxR))’ an

F(VS7 AXR)
_ R o

m 4/ M
m=o Y " o, =T YNGR, x=1
1 >\énQQVT M 2 3 mO o, X R’

where the first term on the right-hand side is the electron
density and x(= 7/R) is the radial coordinate » normalized
to the grid sphere radius R. Fixing both the potential well
depth, Ay, calculated from the quasi-neutrality condition,
and the potential on the grid sphere surface Xz, we vary
the derivative at the grid sphere surface until at some
point inside the grid sphere both the potential and its

~
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derivative become zero. Equation (11) has been solved
for the grid sphere potentials 100 V, 500 V, and 1000 V
for II, = 9 x 10°, 1.5 x 107; and II, = 0.002, 0.0243,
which for a grid sphere with radius 10 m are
approximately the maximum and minimum values of
IT;, II, at altitudes of 300—500 km and thermal energy
0.1 eV. We chose a flux density j roughly equal to the
Parker-Murphy limit. Figure 5 plots the solution of
equation (11) for the grid sphere potential 500 V and
IT;, II, parameters listed above. As can be seen from
Figure 5, the potential distribution strongly depends only
on parameter II;, and in particular, on the electron
Debye length. For denser plasma, that is, for larger
parameter II;, the region where the potential is close to
quasi-neutral is also larger. The dependence on parameter
IT, and therefore on the oxygen neutral density is slight.
The same dependence on the parameters II;, II, holds
for the grid sphere surface potentials of 100 V and 1000 V.
Figure 6 plots the dependence of the potential distribution
on the grid sphere surface potential, holding parameters
II;, II, fixed. As can be seen from Figures 5 and 6, even
in the case where the potential changes more gradually,
most of the grid sphere interior has a potential close to
neutrality. This validates the assumption above that ions
are born mostly in the region where the potential is close
to the potential of a quasi-neutral plasma. The extent of
this region depends primarily on the parameter II;, and
therefore on the plasma density. For the system parameters
considered above, the density is high enough to create
such a region. In this sense the plasma is dense, as has
been initially assumed. The potential distribution presented
by Figures 5 and 6 is also consistent with the assumption
that the potential drops near the grid sphere surface and
that the electric field in this region is strong, supporting
the choice of the electron density distribution.

[26] We calculated the depth of the potential well for
system parameters such that the main ion population is
produced in the region where the potential is close to
quasi-neutral. This simplifies the calculation of the ion
density, because the potential @(r) in distributions (3)—(5)
is constant for all particles, but if this region is small this
simplification fails. Because the depth of the potential well
is defined by the balance between ion production and loss
through the grid sphere surface, smaller production rates
deepen the potential well and shrink the quasi-neutral
region. This can be seen in Figure 5, where smaller
production rates correspond to smaller parameter II, in
equation (11). As can be seen from distribution (5) for the
satellite velocity vy = 7.31, a well depth of about 10 V will
confine practically all produced ions so reducing the ion
production rate only shrinks the quasi-neutral region.
Therefore as long as a quasi-neutral region exists inside
the grid sphere, the depth of the potential well will be
about the same order of magnitude as found in the
calculations above.

[27] While a solid sphere contactor collects current only
in the ram hemisphere, a grid sphere collects current in both.
Since the potential well inside the grid sphere is small
compared to the energy of the electrons accelerated by the
grid sphere surface potential, the electrons should be able to
cross and leave the grid sphere interior through the wake
hemisphere if they do not intersect the mesh. These elec-
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trons will be attracted back by the grid sphere potential, and
may add to the collected current.

4. Region Outside the Grid Sphere and Grid
Sphere Current Collection

[28] We now use the model developed above to estimate
an upper bound for the current collected by the grid sphere.
First we return to the assumptions of solid sphere current
collection presented in section 2 and discuss to what degree
they are applicable to a grid sphere. We assumed that a
positively charged sphere should reflect the incoming ions,
so that the potential of the reflecting region is determined by
the satellite orbital velocity. Clearly this potential should be
independent of the sphere transparency and as valid for the
grid sphere as for the solid one. We did not consider the
structure of this region, but assumed that the boundary of
this region collects the upper limit current in magnetized
plasma, calculated according to Laframboise and Parker
[1973]. This is still consistent with our goal of estimating
the maximum collectable current. Neglecting the structure
of the region where the incoming ions are reflected, we also
assumed elastic reflection, and that the ion density at the
inner boundary is twice the undisturbed ion density. Further,
we assumed that the electron density at this boundary equals
the ion density, because of the supposition that the plasma is
close to neutral. These assumptions hold also for the grid
sphere, but now the electron density at the boundary will
include a contribution from the flux passing through the
grid sphere. It is less clear how the grid sphere transparency
will affect the electron density distribution that has been
assumed for the region between the ion reflecting boundary
and the sphere surface in equation (2) and therefore the
radius of the current collecting boundary in equation (1). We
do not think that the electron distribution will change
drastically, however, for the following reasons.

[29] As can be seen from Figures 3 and 4, the results from
the Alpert model are close to the experimental data, where
the model assumes a solid sphere at rest in plasma without a
magnetic field. Alternatively it is known [Alpert et al.,
1965] that under the same conditions, the potential distri-
bution around a charged sphere is strongly affected by
particle reflection from the body surface only if the
reflection is very close to perfect, | — g < R/l, where ¢
is the reflection coefficient and / is the particle free path.
For the grid sphere there also exists a flux from the sphere
surface that could be considered, at least qualitatively, as
the flux of reflected particles with a “reflection coeffi-
cient” roughly equivalent to the grid sphere transparency.
Since the inequality above is not satisfied, we expect that
the character of the potential distribution given by the
Alpert model will not change dramatically if applied to a
grid sphere. Because the results of our calculations and the
results of the Alpert model agree with the data for a
variety of plasma densities and potentials where the
condition epr/kT > (R/N\p)*” holds, we expect that our
choice of the electron density distribution, verified for a
solid sphere, is also valid for a grid sphere. Therefore, to
estimate the maximum current collected by a grid sphere,
we calculate the current collected by a solid sphere for the
same system parameters, and assume that the current
collected by a grid sphere is equal to this current times
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Figure 6. Normalized potential distribution inside the grid
sphere, Ax = e(@(r) — po)/kT, with II; =9 x 10° and II, =
0.002 for different grid sphere surface potentials: epg/kT =
10° (solid line), epp/kT = 5 x 10° (dotted line), and
ep/kT = 10* (dashed line).

the opacity, the probability the electron collides with the
mesh before leaving the interaction region. According to
section 3, electrons are one-dimensionally accelerated by
the grid sphere surface potential, but their density is
approximately isotropic inside the grid sphere. The elec-
tron penetrates inside the grid sphere with a probability
equal to the grid sphere transparency o. We assume that
this electron can reach either the ram or the wake
hemisphere from inside the grid sphere with equal prob-
ability, 1/2. If the electron intersects the ram hemisphere it
can escape the region of interaction with a total probability
equal to the product of the probability to enter the grid
sphere, o, the probability to reach the ram hemisphere,
1/2, and the probability to exit through the mesh, «, that
is, with total probability /2. This is also the probability
that the electron will be found in the wake hemisphere. To
estimate an upper limit for the collected current, we
assume that if the electron after the first passage exits in
the wake region alone it is attracted back by the grid
sphere, intersecting the grid sphere surface two more times
before finally leaving the interaction region. The probabil-
ity that the electron will return from the wake region
inside the grid sphere is the product of the probability to
reach the wake region, 0¢2/2, calculated above, and the
probability to avoid the mesh twice, o2, that is, o*/2. As
the result, an electron is able to intersect the region of
interaction and escape into the surrounding plasma with
the probability o2 + 2. So, for this scenario the
collected current is

(12)

Here I, is the current collected by the grid sphere, and I
is the current collected by the solid sphere. The normalized
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current I /I, for a solid sphere with radius 10 nm for
typical plasma densities and particle thermal energy 0.1 eV
is presented in Table 4 in the two first rows. With the help
of this ratio and equation (12) for the grid sphere for a
given transparency and potential, the collected current can
be estimated. In Table 4 this current is presented in the
two last rows in amperes where the transparency is taken
to be 90%.

5. Discussion and Conclusions

[30] In this paper we have estimated the maximum
current that can be collected by a grid sphere. This
calculation takes into account the orbital grid sphere
motion and ion production inside the grid sphere due to
impact ionization by incoming electrons accelerated by
the grid sphere surface potential. These two processes
lead to the formation of a small potential well inside the
grid sphere. For grid sphere potentials of 100 V and
1000 nV, the well depth has been found to be in the range of
5V to 7V, respectively. So the depth of this potential well is
comparable to the energy of the ions born inside the sphere,
which is defined by the relative velocity between the neutrals
and the satellite. Such a small potential drop means that the
electron motion inside the grid sphere will be only slightly
affected by this electric field. Electrons will crossover the
grid sphere interior and some fraction of uncollected elec-
trons penetrating the ram hemisphere will leave the grid
sphere through the wake hemisphere. These electrons will
be attracted back by the grid sphere potential and will
additionally intersect the grid sphere surface. So the
effective opacity of the grid sphere will be higher than
that defined by the mesh transparency and a larger current
can be collected.

[31] We base this estimate of the grid sphere current
collection on the proposed model of the current collection
by a solid sphere contactor. Results of the TSS 1 and TSS
IR sphere contactors demonstrated that the collected cur-
rents differ significantly from that predicted by the Parker-
Murphy model [Parker and Murphy, 1967] as can be seen
in Figures 3 and 4. So this model has been modified by
different authors taking into account the satellite motion, ion
reflection, and higher electron temperatures observed in the
experiment. The results obtained by Dobrowolny et al.
[1995] (Figure 3) and Laframboise [1997] with these
modifications are in a good agreement with the observations
of the TSS 1 mission. The curve in Figure 10 of
Laframboise [1997] is very close to the carve P-M 2 in
Figure 3. When Laframboise [1997] compared his model
with the preliminary results from the TSS IR flight, he
concluded that the model needed further modification.
Good agreement with TSS 1R data has been found by
Cooke and Katz [1998], but they did not discuss the currents
collected by the TSS 1 mission. Data from both flights have
also been compared with the prediction for the collected
currents from the Alpert model [Alpert et al., 1965] for
unmagnetized plasma and contactor at rest by Dobrowolny
et al. [1995] and Vannaroni et al. [1998]; which agree with
the measurements (Figures 3 and 4) only if the inequality
eorl/kT > (R/Mp)*? is valid.

[32] The main components of our model (reflection of
incoming ions, potential and density distribution in this
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Table 4. Normalized Current //I; Collected by the Solid Sphere
(First Two Rows) and Current Collected by the Grid Sphere I, (A)
With the Same Radius, 10 m (Last Two Rows)

Yr, V
N 10710, m~3 100 500 1000
5 2.9 4.1 53
70 25 28 3.1
5 0.4 0.6 0.7
70 5.1 5.7 6.4

reflecting region, one-dimensional electron acceleration
near the sphere surface, upper limit for current collection
in the magnetic field) have been discussed in a number of
studies, in particular related to the TSS 1 and TSS IR
missions [Laframboise and Parker, 1973; Laframboise and
Sonmor, 1993; Dobrowolny et al., 1995; Vannaroni et al.,
1998; Katz et al., 1994; Laframboise, 1997; Cooke and
Katz, 1998; Ma and Schunk, 1998; Singh and Leung, 1998].
The modification we propose is based on the assumption
that the current collecting region can be divided in two
parts: an outer region collecting the upper limit current
permitted for two-dimensional electron acceleration, and an
inner region where the electron density distribution is
determined by one-dimensional acceleration. The boundary
between these two regions is approximately defined as the
point where the electric field abruptly changes. This is
the element that has not been used in previous models.
The approach appears to be reasonable, and the currents
calculated from our model are in good agreement with the
currents measured by the TSS 1 and TSS IR missions. So, it
can be hypothesized that this boundary between the two
regions of disturbed plasma near a solid body, as introduced
in the model, is a robust characteristic of the process of
current collection, at least for high enough (>20V)
sphere potentials.

[33] We can use this estimate of the maximum current
collected by a grid sphere to compare the advantage of such
an anode design for mass and drag reduction. The drag
force, caused by collisions with neutrals, is proportional to
the grid sphere surface solid fraction multiplied by two,
because of the interaction with the outer surface of the ram
hemisphere and the inner surface of the wake hemisphere.
So

Fgo = 2(1 — o)Fy, (13)
where F,, and Fj, are the friction forces acting on the
grid sphere and the solid sphere respectively. From
equations (12) and (13) it follows that the drag per unit
of collected current for a grid sphere with a transparency
of 80—95% is approximately 1.2—1.4 times smaller than
for a solid sphere with the same radius, while the
reduction in the mass per unit current is 2.4—2.8 times.
We can also compare these two anode designs at a fixed
current. Since the current collected by a solid sphere
depends on the sphere radius as [ R?/R*°, where o is
defined only by the sphere potential (section 2), equating
the currents (equation (12)) gives their radii as

1
R . 2 4\ 351
& 1_OL__0L_ .
Ry 2 2

(14)
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The mass and drag ratios for these anodes are
M, Re\’ F, M,
TE o (CB) (1-q), 2=27F (15)
M\'X RAX\‘ F\‘.\‘ M\X\’

and for the range of parameters presented in Table 4 these
ratios have a well expressed minimum as a function of the
grid sphere transparency o. For normalized grid sphere
potentials in the range epr/kT = 10°—10* this minimum
corresponds to the range of transparencies o = 0.9-0.76,
with corresponding mass ratios Mg/M, = 0.45-0.56, and
a drag ratio of about one. Of course the anode designs
should be compared taking into account specific mission
requirements, such as the needed current.

Appendix A: Ion Density Inside the Grid Sphere

[34] 1. The normalization constant, C, in the ion distri-
bution function (5) has been calculated from equation (6).
The ion flux density through the grid sphere surface on the
right-hand side of this equation in spherical coordinates in
velocity space is

I= / F (R V)V,

2% /2 00

—C / do / sin 0d) / veosY v 2 gy,
u
0 0

0

(A1)

where u(R) = \/v? + Axg, and Axr = e(pr — @o)/kT is the
normalized potential drop between the grid sphere surface
(r) and the neutral region (¢g). The result of the integration
(with the change from the variable v to the new variable
u(R)) is

2
o) + Ve +3) (14 )

(A2)

where zf = v; + \/Ax . The normalization constant C (5)
then can be found with the help of this expression for /
substituted in equation (6).

[35] 2. The ion density for the distribution function (5),
(7) can be found as

VAXR—AX

n(r) = 47W3TC —e_<“_"“)2dv7

- (43)

o

where u(r) = \/v? + Ax and Ax = e(p(r) — wo)/kT. The
ions able to reach the grid sphere surface with nonzero
velocity are lost, and their contribution to the density is
negligible in equilibrium because of their small production
rate and transit time, as has been found in section 3. Under
these conditions the upper limit of the integral follows from
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Figure Al. Comparison of the exact (solid lines) and
approximate (dashed lines) integrands F for the ion density
calculations for parameters Ay = 1 (curve 1), Ax =
(curve 2), and Ax = 80 (curve 3). For Ax = 80, the
integrands are enlarged a hundred times.

energy conservation, MV?/2 + ep(r) = MV#/2 + epg. For
Ax = 0 the result of the integration is

n(ro) = 2(\/EVT)3C<\/E(6*V3 - e‘(m‘w)z)
+ vs<1 - sgn<vs - \/A—XR>erf< Vg — M‘))) (A4

[36] An approximate expression for the integrand in the
equation (A3) has been used to obtain an analytic expres-
sion for the density, if A is comparable to Axz. After a
change of variable v to u(r) = \/v? + Ay, the integrand
F= — Axexp(—(u — vy)?) has been approximated by
the funct1on (u — /AXV)(1 — exp(\/Ax — u))exp(—(u —

vs)?), where the satellite velocity, normalized to the velocity
of the oxygen ions that weakly changes in the altitude range
300—-500 km, has been taken to be vy = 7.31. The potential
well depth that has been found with the help of the equation
(A4) in section 3, for system parameters considered in this
paper is restricted by condition Ax < 75. Both integrands
are plotted in Figure Al for different magnitudes of Ay. As
can be seen from Figure Al, the error of such approxima-
tion results in a difference in the areas not larger than 10%.
With this approximation the ion density is

n(r) = 2(v/7vr) C(¥ (v, AX) — ¥ (5, Axp))

(s, Ax) = <vs - m) (1 +sgn(z-)erf(|z-1))

(AS)

s

— (Vs - @ - %) (1 +sgn(z_ —0.5)
VAX

cerf(Jz- — O.5|))efz*+% z_ =, —
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Y(v,, AX) is the function W(v,, Ax) calculated for Ay =
AXR'
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